— 422860 код продукции

Счётчик электрической энергии трехфазный электронный СЭТ3_____

ПАСПОРТ

_____523.СЭТ3.000 обозначение изделия

Содержание

1 Основные сведения об изделии	3
2 Основные технические данные	4
3 Комплектность	8
4 Ресурсы, сроки службы, гарантии изготовителя	9
5 Свидетельство о приемке	10
6 Сведения о поверке	
7 Указание мер безопасности	
8 Заметки по эксплуатации и хранению	
Приложение 1. Маркировка зажимов и схемы включения счетчи-	
ков	15
Приложение 2. Габаритный чертеж	25
Приложение 3. Гарантийный талон	26

1 Основные сведения об изделии

1.1 Счетчик электрической энергии СЭТЗ (в дальнейшем счетчик) предназначен для учета активной или (и) реактивной энергии в трехфазных трехпроводных или четырехпроводных сетях переменного тока, а также для разделения учета энергии по двум временным тарифам, раздельного учета расхода и прихода активной энергии, раздельного учета индуктивной и емкостной реактивной энергии.

Счетчик изготавливается в пластмассовом корпусе.

- 1.2 Счетчик может использоваться в качестве телеметрического датчика мощности информационно-измерительных систем автоматического учета знергопотребления.
 - 1.3 Рабочие условия применения счетчика:
 - температура окружающего воздуха от минус 40 до плюс 55 □С;
 - относительная влажность до 98 □ при значении температуры плюс 25 □ С;
 - атмосферное давление от 60 до 106.7 кПа (460 800 мм.рт.ст.)
- 1.4 Счетчики соответствуют ГОСТ Р 52320-2005 и техническим условиям 523.СЭТ3.110.000 ТУ. Счетчик реактивной энергии соответствует ГОСТ Р 52425-2005, счетчик активной энергии класса точности 0.5 соответствует ГОСТ Р 52323-2005, счетчик активной энергии класса точности 1.0, 2.0 соответствует ГОСТ Р 52322-2005, внесены в Государственный реестр средств измерений. Регистрационный номер №14206-09.
 - 1.5 Счетчик сертифицирован:
- сертификат соответствия № РОСС RU.ME65.B01534 действителен по 06.08.2012, выданный органом по сертификации средств измерений «Сомет» АНО «Поток-Тест»
 - 1.6 Адрес предприятия изготовителя:

```
Россия, 390000, г.Рязань, ул.Семинарская, д.32, ФГУП ГРПЗ (4912) 29-86-18 – сбыт, факс (4912) 28-95-56
```

2 Основные технические данные

- 2.1 Исполнения счетчиков, их условное обозначение, напряжение, номинальное, базовое, максимальное и стартовое значение тока, класс точности приведены в таблице 2.1.
- 2.2 Основная погрешность для счетчика учета:
- активной энергии соответствует требованиям ГОСТ Р 52322-2005 и ГОСТ Р 52323-2005;
- реактивной энергии ГОСТ Р 52425-2005.
 - 2.3 Частота измерительной сети счетчика 50 Гц.
- 2.4 Счетчики имеют семиразрядные (шестиразрядные) суммирующие устройства, дающие показания в киловатт-часах (киловар-часах).

Значения единиц младшего разряда суммирующих устройств счетчика приведены в таблице 2.1.

- 2.5 Счетчики имеют выходы:
 - телеметрические выходы основного передающего устройства;
 - поверочный выход.

Счетчики с одновременным учетом активной и реактивной энергии имеют по два гальванически развязанных телеметрических выхода и отдельные поверочные выходы на каждый вид измеряемой энергии.

Счетчики на два направления энергии (исполнение Π) имеют раздельные телеметрические выходы (гальванически развязанные) на каждое направление энергии.

Передаточные числа телеметрического (А) и поверочного (В) выходов приведены в таблице 2.1.

Длительность импульсов (состояние "Замкнуто"):

- телеметрического выхода должна быть не менее 0.12 с;
- поверочного выхода (0.5 ± 0.05) мс.
- 2.6 Счетчики имеют световые индикаторы:
 - однотарифные один,
 - остальные исполнения два, отображающие режимы работы счетчика.
- 2.7 Двухтарифные счетчики имеют два суммирующих устройства дневного () и ночного () тарифов и цепь управления состоянием (активное или пассивное) суммирующих устройств.
- 2.8 В зависимости от исполнения счетчика переключение суммирующего устройства ночного тарифа двухтарифных счетчиков в активное состояние производится подачей напряжения постоянного тока значением от 9 до 15 В или переменного тока действующим значением 220 В частотой 50Гц. Схемы подключения устройств переключения тарифов приведены на рисунках 4 и 4а данного паспорта

- 2.9 Полная мощность, потребляемая каждой последовательной цепью, при номинальном токе не превышает $0.05 B \cdot A$.
- 2.10 Активная и полная мощность, потребляемая каждой параллельной цепью не превышает:

для счетчиков учета реактивной энергии:

- 4B·A с напряжением 3×220/380 B,
- 1 B·A с напряжением 3×57,7/100 B

для счетчиков учета активной энергии 2Вт и 10 В:А.

Для счетчиков с одновременным учетом активной и реактивной энергии полная мощность, потребляемая каждой параллельной цепью должна быть не более 2,5 В·А для исполнения СЭТ3ар-01-12-07, СЭТ3ар-01-22-08, СЭТ3ар-01-24-09 и не более 6 В·А для исполнения СЭТ3ар-02-34-10, СЭТ3ар-02-46-11.

- 2.11 Полная мощность, потребляемая цепью управления состоянием суммирующих устройств двухтарифных счетчиков, не превышает 0,1 В·А.
 - 2.12 Масса счетчика не более 1,6 кг.
 - 2.13 Габаритные и установочные размеры счетчика указаны в приложении 2.
 - 2.14 Средний срок службы счетчика не менее 30 лет.
 - 2.15 Средняя наработка до отказа 140000 часов.
- 2.16 Счетчик защищен от проникновения пыли и воды и удовлетворяет степени защиты по ГОСТ 14254.

Таблица 2.1 - Основные параметры и технические характеристики счетчиков

таолица 2.1 - Ос	новные пар	аметры и	техниче	ские хара	<u>ктеристики</u>	счетчиков		
Условное	Напряжение,	Номиналь-	Базо-	Класс	Передаточ-	Передаточ-	Единица	Значе-
обозначение	В	ный и мак-	вый и	точ-	ное число А	ное число В	младшего	ние
исполнения		симальный	макси-	ности	основного	повероч-	разряда,	старто-
счетчика		ток, А	маль-		передающе-	ного выхода,	кВт∙ч	вого
			ный		го устройс-	имп/кВт·ч	(кВар∙ч)	тока, А
			ток, А		ва,	(имп/кВар∙ч		
					имп/кВт·ч			
					(имп/кВар·ч)			
СЭТ3а-01-22-01	3×57,7/100	5-7,5		0.5S	2500	80000	0.01	0.005
СЭТ3а-01-24-02	3×57,7/100	5-7,5		1.0	2500	80000	0.01	0.010
СЭТ3а-02-34-03	3×220/380		1-7,5	1.0	2500	80000	0.01	0.004
СЭТ3а-02-44-04	3×220/380		5-50	1.0	500	8000	0.1	0.020
СЭТ3а-02-64-05	3×220/380		5-65	1.0	500	8000	0.1	0.020
СЭТ3а-02-74-06	3×220/380		10-	1.0	500	8000	0.1	0.040
			100					
СЭТ3ар-01-32-07	3×57,7/100	1-7,5		0.5S/0.5	20000	1280000	0.01	0.001
СЭТ3р-01-22-08	3×57,7/100	5-7,5		0.5	2500	80000	0.01	0.005
СЭТ3ар-01-22-08	3×57,7/100	5-7,5		0.5S/0.5	2000	128000	0.1	0.005
СЭТ3р-01-24-09	3×57,7/100	5-7,5		1.0	2500	80000	0.01	0.010
СЭТ3ар-01-24-09	3×57,7/100	5-7,5		1.0/1.0	2000	128000	0.1	0.010
СЭТ3р-02-34-10	3×220/380		1-7,5	1.0	500	16000	0.1	0.004
СЭТ3ар-02-34-10	3×220/380		1-7,5	1.0/1.0	2000	128000	0.1	0.004
СЭТ3ар-02-44-11	3×220/380		5-50	1.0/1.0	200	12800	0.1	0.020
СЭТ3а-02Т-34-16	3×220/380		1-7,5	1.0	2500	80000	0.01	0.004
СЭТ3а-02Т-44-17	3×220/380		5-50	1.0	1000	16000	0.1	0.020
СЭТ3а-01П-22-27	3×57,7/100	5-7,5		0.5S	2500	80000	0.01	0.005
СЭТ3а-01П-24-28	3×57,7/100	5-7,5		1.0	2500	80000	0.01	0.010
СЭТ3р-01П-22-30	3×57,7/100	5-7,5		0.5	2500	80000	0.01	0.005
СЭТ3р-01П-24-31	3×57,7/100	5-7,5		1.0	2500	80000	0.01	0.010
СЭТ3а-02-34-37 *	3×220/380		1-7,5	1.0	2500	80000	0.01	0.004
		•		•				

Примечание - В условном обозначении счетчика: а - для учета активной энергии; р - для учета реактивной энергии; ар – для учета активной и реактивной энергии; Т – двухтарифные; П – прямого и обратного направления тока (перетоковые).

Исполнение счетчика, обозначенное «*» имеет дополнительный телеметрический выход.

3 Комплектность

3.1 Комплект поставки счетчика приведен в таблице 3.1. Таблица 3.1

Обозначение изделия	Наименование изде-	Коли-	Примечание
	лия	чество	
523.CЭT3.000	Счетчик электриче- ской энергии СЭТ3	1 шт	
		1 шт	
523.CЭT3.150	Упаковка		□- высылается
		1 экз.	по требованию организаций,
523.СЭТ3.000ПС	Паспорт		производящих регулировку,
			поверку и ре-
523.СЭТ3.110.000ДИ*	Методика поверки	1 экз.	монт счетчиков по отдельному
	-	1 экз.	договору
523.CЭT3.000 РЭ*	Руководство по	1 3K3.	
	эксплуатации		

4 Ресурсы, сроки службы, гарантии изготовителя

Установленый срок службы счетчика не менее 30 лет. Периодичность поверки - 16 лет.

Указанный срок службы действителен при соблюдении потребителем требований действующей эксплуатационной документации.

Гарантии изготовителя

При поставке счетчиков потребителю предприятие - изготовитель гарантирует соответствие счетчиков требованиям 523.СЭТ3.000 ПС при соблюдении потребителем условий эксплуатации и сохранности поверочных пломб.

Гарантийный срок эксплуатации 4, 5 года со дня ввода счетчика в эксплуатацию, при этом общий гарантийный срок, включая срок хранения и эксплуатации не более 5 лет со дня изготовления.

По истечении гарантийного срока хранения начинается использоваться гарантийный срок эксплуатации, независимо от того – введен счетчик в эксплуатацию или нет.

Примечание – Гарантийный срок эксплуатации может быть изменен (увеличен) на договорной основе в зависимости от объема поставляемой партии.

Гарантии предприятия-изготовителя снимаются, если счетчик имеет механические повреждения, возникшие не по вине изготовителя, а также если сорваны или заменены пломбы счетчика

Гарантийный ремонт отказавшего счетчика предприятие-изготовитель осуществляет при наличии паспорта

5 Свидетельство о приемке 5.1 Счетчик электрической энергии СЭТ3_____ заводской номер _____ изготовлен и принят в соответствии с техническими условиями 523.СЭТЗ.110.000 ТУ и признан годным для эксплуатации. Дата выпуска _____ МП (оттиск клейма ОТК) 6 Сведения о поверке 6.1 Счетчик электрической энергии СЭТ3_____ заводской номер______внесен в Государственный реестр №14206-09 на основании результатов первичной поверки СИ из производства, проведенной ФГУ «Рязанский ЦСМ», признан годным к применению в сфере государственного регулирования обеспечения единства измерений. Дата первичной поверки из производства МП (клеймо поверителя) расшифровка подписи 7 Указание мер безопасности 7.1 По безопасности эксплуатации счетчик удовлетворяет требованиям ГОСТ 22261-94 и ГОСТ Р 51350-99. 7.2 По способу защиты человека от поражения электрическим током счетчик соответствует классу II по ГОСТ Р 51350-99, ΓΟCT P 52322-

2005, FOCT P 52323-2005, FOCT P 52425-2005.

8 Заметки по эксплуатации и хранению

- 8.1 Порядок установки
- 8.1.1 Монтаж, демонтаж, вскрытие, ремонт, поверку и пломбирование счетчика должны производить только специально уполномоченные организации и лица согласно действующим правилам по монтажу электроустановок.

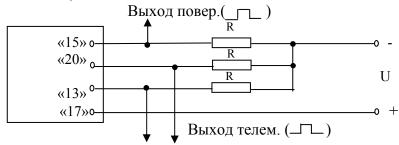
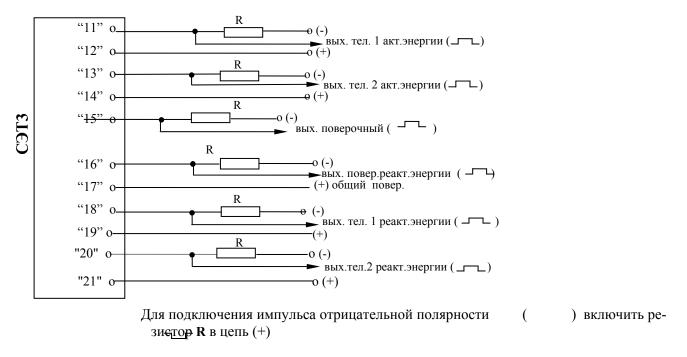
ВНИМАНИЕ! Счетчик является сложным электронно-механическим измерительным прибором, его необходимо предохранять от падения, ударов по корпусу и других случайных механических повреждений при обслуживании.

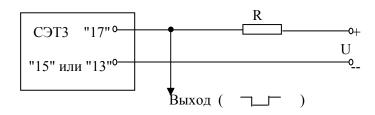
8.1.2 Подключение счетчиков в зависимости от исполнения следует производить в соответствии со схемами, изображенными на крышке колодки и приведенными в приложении 1.

Для счетчиков исполнения «П» (перетоковых) подключение производить по схемам включения счетчиков активной или реактивной энергии в зависимости от их типа

- 8.1.3 Указания по подключению телеметрического и поверочного выходов.
- 8.1.3.1 Телеметрические и поверочный выходы гальванически развязаны с помощью оптопар от остальных цепей счетчика и имеют два состояния ("Замкнуто" и "Разомкнуто"), отличающиеся импедансом выходной цепи. Для обеспечения их функционирования необходимо подать питающее напряжение по схеме, приведенной на рисунке1.

На рисунке 1 изображено подключение для счетчиков исполнения «П» (перетоковых)


Рисунок 1

На рисунке 2 изображено подключение для счетчиков с одновременным учетом активной и реактивной энергии

Рисунок 2

В случае отдельного использования телеметрического (за исключением счетчиков исполнения "П"(перетоковых) или поверочного выхода можно использовать схему подключения, приведенную на рисунке 3.

Рисунок 3

8.1.3.2 Величина электрического сопротивления R в цепи нагрузки определяется по формуле:

$$R = \frac{U}{I}$$

где U — напряжение питания, не более 24 В; I — сила тока, не более 30 мА для телеметрического и не более 10 мА для поверочного выходов

- 8.1.4 Подключение устройств переключения тарифов.
- 8.1.4.1 Подключение устройства переключения тарифов к счетчику осуществляется по схемам, приведенным на рисунках 4 и 4а.

Устройство переключения	Вых (+) U	о	_o "19" СЭТ3
тарифов	Общ ()	o —	о "18"

где U — напряжение, не более 15 B;

Рисунок 4

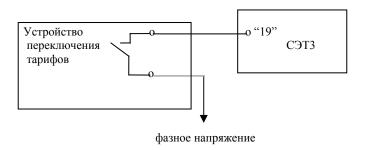


Рисунок 4а - Схема подключения с использованием фазного напряжения, для счетчиков, изготовленных до 31.10.2006г.

8.1.4.2 Возможна эксплуатация двухтарифного счетчика без устройства переключения тарифов. В этом случае показания следует снимать с верхнего суммирующего устройства (). Зажим «19» колодки при этом не задействован 8.1.5 Светодиодная индикация

Световые индикаторы отображают следующую информацию:

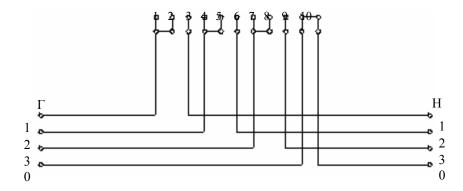
- 1) Текущий уровень измеряемой электроэнергии.
- На световом индикаторе должны наблюдаться импульсные вспышки, периодичность которых соответствует числу A, указанному на панели счетчика.
- В паузах между импульсами на индикаторе должно наблюдаться постоянное свечение меньшей яркости.
- 2) Активное или пассивное состояние суммирующего устройства (для счетчиков с двумя суммирующими устройствами).

Световой индикатор суммирующего устройства, находящегося в активном состоянии, должен работать, как описано в предыдущем пункте, а индикатор суммирующего устройства, находящегося в пассивном состоянии, должен быть отключен.

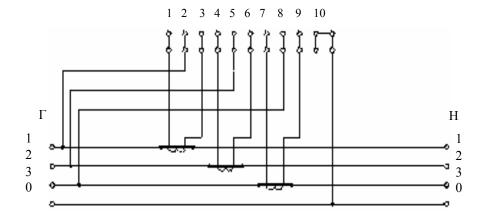
- 3) При отсутствии напряжений в параллельных цепях счетчика все индикаторы не светятся.
- 4) LED число импульсных вспышек светодиода, соответствующее 1 кВт · ч (квар · ч).

8.2 Хранение

8.2.1 Счетчик до введения в эксплуатацию следует хранить на складах в упаковке предприятия-изготовителя при температуре окружающего воздуха от 0 до 40 о С и относительной влажности воздуха 80% при температуре 35оС.

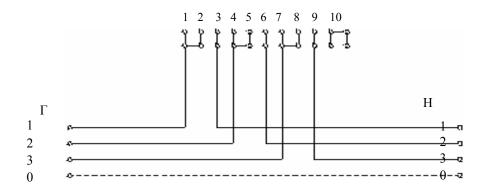

ПРИЛОЖЕНИЕ 1

МАРКИРОВКА ЗАЖИМОВ И СХЕМЫ ВКЛЮЧЕНИЯ СЧЕТЧИКОВ

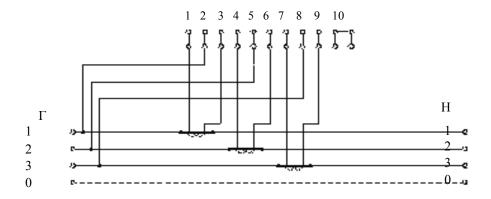

1. Схемы включения счетчиков активной энергии

с напряжением 3×220/380 В.

Непосредственного включения

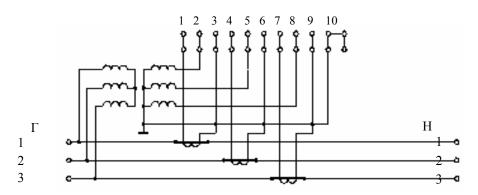


1.2) С измерительными трансформаторами тока

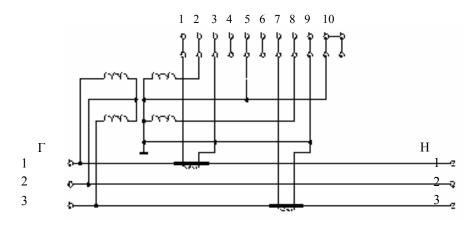


2. Схемы включения счетчиков реактивной энергии с напряжением $3 \times 220/380 \; \mathrm{B}$

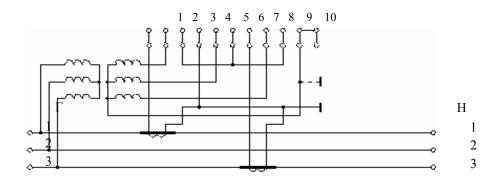
2. 1) Непосредственного включения



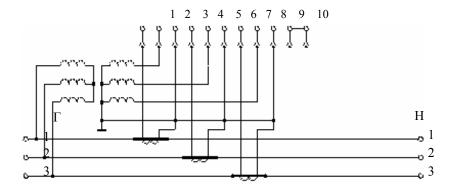
С измерительными трансформаторами тока

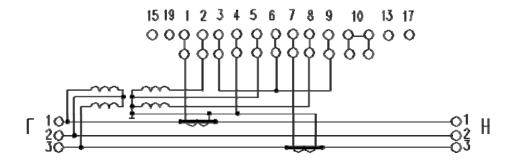


3. Схемы включения счетчиков активной энергии напряжением $3 \times 57,7/100 \text{ B}$


3.1) С тремя измерительными трансформаторами тока и напряжения

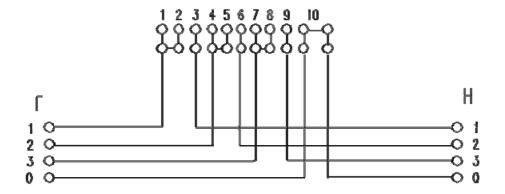
3.2) С двумя измерительными трансформаторами тока и напряжения


3.3) C тремя измерительными трансформаторами напряжения и двумя измерительными трансформаторами тока


В зависимости от используемого оборудования заземляется одна из фаз или общий вывод вторичной обмотки трансформатора напряжения

4. Схема включения счетчиков реактивной энергии с напряжением 3×57,7/100 В

4.1) С тремя измерительными трансформаторами тока



С двумя измерительными трансформаторами тока и напряжения

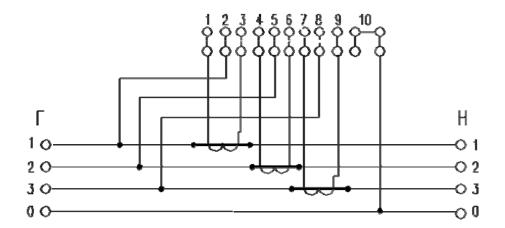
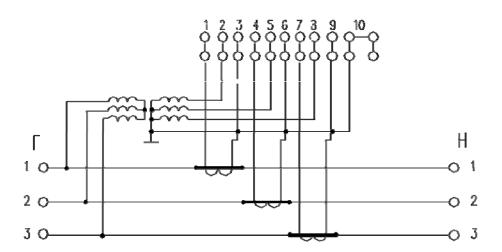
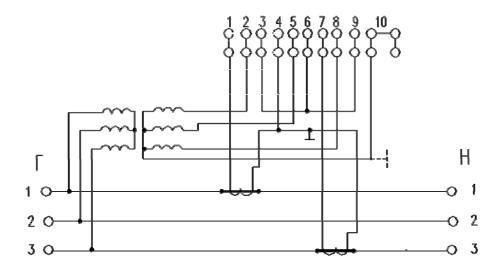


Схема включения счетчиков исполнения СЭТЗар-02-34-10, СЭТЗар-02-46-11

5.1) непосредственное включение

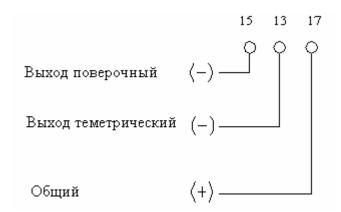


5.2) С измерительными трансформаторами тока

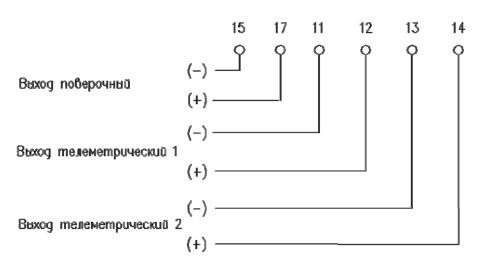


6. Схемы включения счетчиков исполнения СЭТ3ар-01-12-07, СЭТ3ар-01-22-08, СЭТ3ар-01-24-09

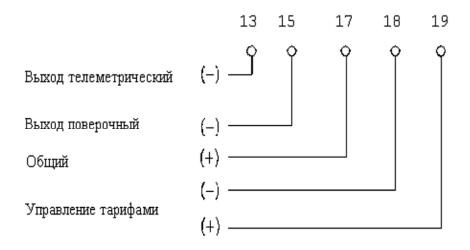
6.1) C тремя измерительными трансформаторами тока и напряжения

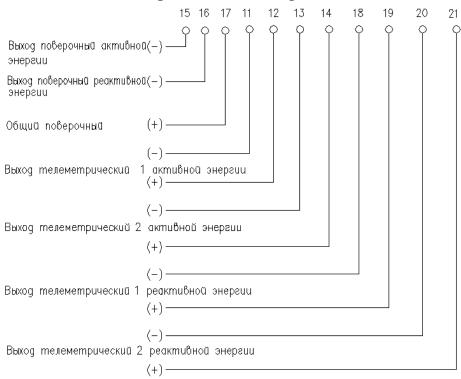


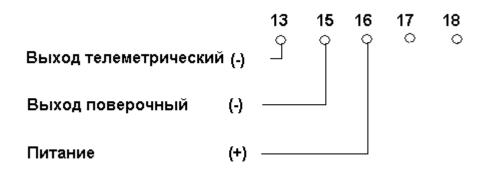
6.2) С двумя измерительными трансформаторами тока и тремя измерительными трансформаторами напряжения

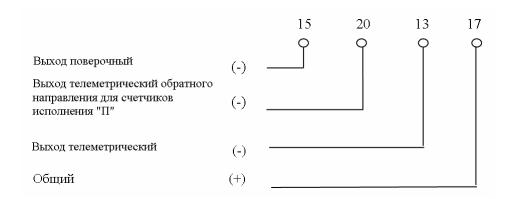


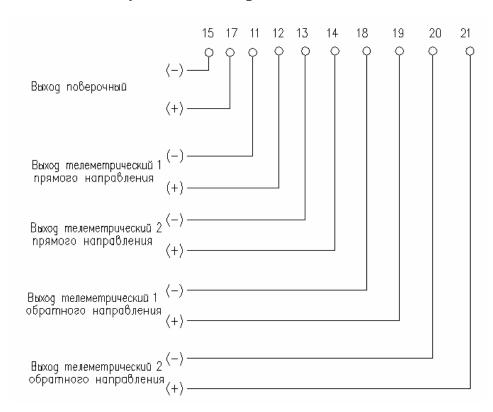
В зависимости от используемого оборудования заземляется одна из фаз или общий вывод вторичной обмотки трансформатора напряжения


7 Назначение информационных контактов однотарифных счётчиков

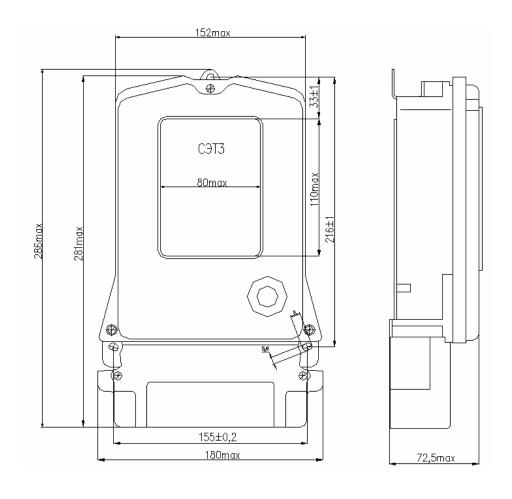

8 Назначение информационных контактов однотарифных счётчиков с двумя телеметрическими выходами.


Назначение информационных контактов двухтарифных счетчиков


10 Назначение информационных контактов в счетчиках с одновременным учетом активной и реактивной энергии


11 Назначение информационных контактов в счетчиках максимальным током 100 A

12 Назначение информационных контактов перетоковых счётчиков



13 Назначение информационных контактов перетоковых счётчиков с двумя телеметрическими выходами.

ПРИЛОЖЕНИЕ 2

ГАБАРИТНЫЙ ЧЕРТЕЖ СЧЕТЧИКА

